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Abstract 

Turbulence The exact simulation and forecasting of the turbulent flows is one of the most 

complicated problems of the fluid dynamics. Although formidable in their abilities, 

conventional Computational Fluid Dynamics (CFD) methods to date have had difficulty 
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maintaining a balance between the competence of the computation and cost. The conclusion is 

a hybrid method that combines Artificial Intelligence (AI) and specifically machine learning 

algorithms with high-order mathematical models of turbulence, and since a comprehensive 

assessment of the approach is challenging, the opinion may be divided by the type of turbulent 

flow that is required to be simulated. A multi-scale, data-driven framework that enhances 

Reynolds-Averaged Navier HisasukiertigaStokes (RANS) and Large Eddy Simulation (LES) 

models with AI modules named eddy viscosity, dynamic mesh adaptation, and sub-grid scale 

error reduction, has been proposed by us. The data is utilized in training and validating the 

models in high resolution obtained by simulating canonical turbulent flows such as channel 

flows and the wake of a bluff body. Results indicate that AI-enhanced simulations output 

results, which are much closer to experimental data, yet can be completed computationally. 

Real-time learning of numerical schemes contributed to the increased accuracy in the 

prediction of vortex shedding, the boundary layer separation and energy dissipation rates 

through the implementation of AI. This paper has shown that use of AI to enhance CFD 

pipelines can provide a revolutionary direction of modelling of turbulence in complex flow 

geometries and at high Reynolds number flows. These findings open the possibilities of 

intelligent modeling of turbulence that can be used in the aerospace industries, in 

environmental flows, and energy networks. 

Keywords: Turbulent flows, Computational Fluid Dynamics (CFD), Artificial Intelligence, 

Machine Learning, Reynolds-Averaged Navier–Stokes (RANS), Large Eddy Simulation 

(LES), Turbulence modeling, Vortex dynamics, Eddy viscosity, Flow prediction. 

 

I. INTRODUCTION 

One of the outstanding problems of classical physics is turbulence. It consists of turbulent, 

multructure flow of fluids that is difficult to navigate and understand theoretically and 

numerically. In everything, ranging from predicting the airflow over aircraft wings to numerical 

forecasting of ocean currents, or industrial mixing, the accurate reproduction of turbulent 

behavior is an essential part of most scientific and engineering research. Conventional methods 

like Direct Numerical Simulation (DNS) provide the true solution to the NavierStokes but is 

not practically viable to most of the applications since it requires a very high level resolution. 

Easier approaches, such as Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy 

Simulation (LES), are made at the expense of accuracy, with modeling assumptions made to 

lower the cost of computation, where accuracy is compromised, especially in transitional flows, 

separated boundary layers, complex geometries. Artificial Intelligence (AI) and Machine 

Learning (ML) have demonstrated their use in recent years as one of the most efficient 

scientific computing tools. They apply well to augment turbulence modeling, where empirical 

closures typically break down, because they are able to learn patterns in large datasets, and to 

approximate complex functions. There are ways of using AI to optimize sub-grid scale models, 

prediction of turbulent kinetic energy, mesh adaptivity and to achieve faster watershed in 

iterative solvers. Because computational capabilities are increasing rapidly and high-fidelity 

data are becoming increasingly available, there is an increasing chance to combine physics-

based CFD solvers with data-driven models in order to provide better turbulence prediction. In 

this paper, AI-augmented turbulent monkey-flow modeling is suggested based on the advanced 

CFD tools. It integrates a range of conventional numerical solvers with machine learning to 

enhance accuracy, efficiency and generalization. We consider three canonical turbulent ways, 

channel flow, backward-facing step, flow past a cylinder, to confirm the methodology. Both 

cases offer information into vortex dynamics, energy dissipation, and near wall turbulence 
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modeling, which in conventional problem solving are challenging to unravel. We also examine 

how AI can be used in RANS and LES models in predicting eddy viscosity, sub-grid scale 

corrections, and spatial adaptivity. With this research, the gap between physics-based 

simulation and data-driven intelligence is filled, which will allow developing a new paradigm 

in the field of fluid mechanics. It provides a powerful scalable modeling process of intelligent 

turbulence and establishes the basis to incorporate the incorporation of AI-CFD in the 

aerospace design, environmental prediction as well as optimization of industrial processes. 

 

II. RELEATED WORKS 

 

It is conventional to construct a statistical closure and two types of empirical relations to 

describe the impact of the unresolved scales in the modeling of turbulent flows. Preliminary 

models of turbulence like the k-e and k-w modeling gave a basis to the Reynolds-Averaged 

Navier-Stokes (RANS) solutions, which are less demanding computationally, but tend to 

simplify and usually are inaccurate in the prediction of separated flows and transient vortex 

motion [6]. Large Eddy Simulation (LES) was a better-resolved alternative deal with eddies 

that were coarser and capture behavior on sub-grid scales at much higher computational costs 

[9]. Although theoretically most accurate, Direct Numerical Simulation (DNS) is not suitable 

to high Reynolds number flows in highly complex domains because it is simply too intensive, 

in terms of both mesh and time step requirements. The shortcomings of classical turbulence 

modeling has relegated scientists to consider the implementation of Artificial Intelligence 

(AI) into Computational Fluid Dynamics (CFD) pipelines. Another of the first ones was that 

of predicting the turbulent kinetic energy (TKE) profiles and velocity gradients in boundary 

layers by using neural networks [13]. These models showed that AI has the advantage of 

being able to substitute data-based alternatives to empirical closures. Ling et al. created a 

Tensor Basis Neural Network that provides Galilean invariance-based prediction of Reynolds 

stress anisotropy in good agreement with DNS data in comparison with RANS traditional 

closures [2]. Some recent works have aimed at the hybridization of machine learning model 

with LES frameworks. To give an example, Wang et al. used convolutional neural networks 

(CNNs) to project sub-grid stress tensors in decaying isotropic turbulence whose energy 

spectra preservation is greatly enhanced over Smagorinsky-type models [10]. Not only these 

techniques minimize the numerical dissipation, but they are also adaptive to turbulent flows 

with large scale separations. The next trend direction is applying deep reinforcement learning 

(DRL) to regulate and optimize flow properties in real-time. Rabault et al. showed that DRL 

agents could conformably reduce the drag due to modification of boundary conditions in 

bluff-body flows [5]. The interactive learning method creates new prospects of adaptive flow 

control in aerospace and automobile engineering. At the same time, the physics-informed 

neural network (PINNs), where Navier?Stokes equations were encoded into the training loss, 

are used to infer flow fields using sparse or noisy data [3]. When it comes to meshing and 

numerical solvers, AI has been utilised in optimising mesh distribution and solver 

convergence. Choudhary et al. have proposed a dynamic mesh refinement procedure which 

serves to decrease numerical error in LES calculations by directing densest mesh in areas of 

rotational construction where it is non-outlandishly keen [12]. Surrogate models predicting 

the whole pipeline of the CFD have also been generated using AI. To give another example, 

Thuerey et al. conditioned generative adversarial networks (GANs) to make high-resolution 

fluid flow forecasts based on coarse input, in effect speeding up the simulation by several 

orders of magnitude [4]. Data-wise, even the existence of sizable DNS and LES data sets, like 

the Johns Hopkins Turbulence Database (JHTDB) have come to go a long way in making the 
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training of machine learning models a much easier task. Companies have extracted features 

such as vorticity, pressure gradients and turbulence intensity out of such data to train 

predictive models that can generalize over flow settings [8]. There is still a problem with 

generalizing models across Reynolds number and geometric conditions however--the issue 

has been touched on in detail by Duraisamy et al. who point to the necessity of building 

physical constraints in to learning architectures [15]. Hybrid models which combine RANS 

with machine learning error terms are also becoming more popular. Durbin et al. proposed an 

enriched turbulence model wherein a deep learning component regulates the turbulence 

viscosity coefficient depending on the local characteristics of the flow and considerably 

enhances the prediction in recirculating/swirling flows [7]. Conversely, the study conducted 

by Kaandorp et al. has shown that ensemble learning can effectively be utilized to measure 

uncertainty of data-driven turbulence forecast [11]. Another crucial frontier is the emergence 

of explainable AI (XAI), particularly in safety-sensitive applications such as aerospace. 

Subsequently, the XAI methods (SHAP: SHapley Additive exPlanations; LIME: Local 

Interpretable Model-agnostic Explanations) have been used to explain model actions and 

verify output given physical insights on the working principles of CFD-AI [14]. Even though 

there have been significant progresses, certain warning works have noted that there is a risk 

of overfitting and brittleness of black-box models in extrapolative cases [6]. Hence, it has 

become increasingly agreed that next-generation AI-CFD applications should place a strong 

focus on interpretability, physical consistency, and uncertainty quantification [9]. 

Collectively, then, literature demonstrates the existence of a wide and quickly growing 

research agenda. Combining computational fluid dynamics, data science and high-

performance, the modeling of turbulence, accuracy and cost of the computation have greatly 

improved. The work in the present paper expounds on these improvements by populating a 

scalable, AI-enhanced CFD platform, customised towards canonical turbulent benchmarks, 

and focused on mesh optimisation, eddy viscosity prediction and remote sensing of structural 

flow anomalies. 

 

III. METHODOLOGY 

 

3.1 Design of the Research 

It is an example of a hybrid methodology like traditional CFD simulation with AI-based models 

implemented. The problem under scrutiny entails incorporation of machine learning (ML) 

algorithms in the conventional turbulence simulation process in the optimization of eddy 

viscosity estimations, mesh refinements, and sub-grid scale modelling. The research will use 

the multiscale temporal-spatial and apply a scheme in which data of canonical turbulence is 

employed to train and test the AI. 

3.2 Case and Domain of Computation 

Three canonical cases of turbulent flows were chosen to perform a study: (i) fully-developed 

turbulent flow in the channel, (ii) turbulent flow past a circular cylinder at Re 3900, (iii) 

backward-facing step flow. Each case constitutes unique turbulence prediction problems i.e. 

vortex shedding, boundary layer separation, and wake dynamics [16]. 
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Table 1: Description of Selected Turbulent Flow Scenarios 

Flow Case Geometry Primary Flow Feature Reynolds 

Number (Re) 

Turbulent Channel 

Flow 

Parallel plate (duct) Wall-bounded shear 

turbulence 

1800 – 5000 

Flow over Circular 

Cylinder 

Cylinder in cross-

flow 

Vortex shedding and 

pressure drag 

3900 

Backward-Facing 

Step Flow 

Sudden channel 

expansion 

Recirculation and 

reattachment 

2800 

 

3.3 Configuration of CFD Solver 

They were performed using pressure-based segregated solver and the SIMPLE pressure-

velocity coupling algorithm. Among the models of turbulence utilised are: 

 Baseline RANS simulation with classical k- e model 

 LES Dynamic Smagorinsky model 

 Ground truth [17] several DNS data (in the literature) 

Discretization of momentum was done with second-order-upwind schemes, and the time steps 

were selected such that CFL < 1. A reference dataset was formed based on transient flow data 

taken at 5000 iterations per case. 

3.4 Development of AI Model 

In this aspect, a hybrid artificial intelligence trajectory- CFD model was devised as a means to 

better the conventional turbulence closure model. The design of three machine learning 

modules was made: 

 Eddy Viscosity Predictor (EVP) A feed-forward neural network to model νturb as a 

function of local flow properties like strain rate, vorticity magnitude and wall distance. 

 Dynamic Mesh Enhancer (DME) Dynamic Mesh Enhancer (DME) is a CNN based 

module which is trained to determine the optimal mesh density distribution in high-

gradient flow regions [18]. 

 Sub-Grid Correction Module (SGCM)A random forest regression model to determine 

error in LES sub-grid stresses taken as the reference condition of DNS [19]. 

The datasets used to train these modules were based on DNS and high-resolution LES and 70 

percent and 30 percent of the data were employed to train and validate, respectively. 

 

Table 2: AI Module Summary 

Module Name Key Inputs ML Technique Predicted 

Output 

EVP (Eddy 

Viscosity 

Predictor) 

Strain rate, TKE, wall 

distance 

Feedforward Neural 

Network 

Turbulent 

viscosity (ν_turb) 
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DME (Dynamic 

Mesh Enhancer) 

Velocity gradients, 

pressure, flow residuals 

Convolutional Neural 

Network (CNN) 

Local mesh 

density 

distribution 

SGCM (Sub-Grid 

Correction 

Module) 

LES stress tensors, 

velocity divergence, eddy 

dissipation 

Random Forest 

Regressor 

SGS stress 

correction 

coefficients 

 

3.5 Validation and training workflow 

The training was done on TensorFlow and Scikit-learn. Grid search and early stopping were 

applied when hyperparameter tuning was used to prevent overfitting. The EVP and SGCM 

models were tested withheld DNS data against in order to evaluate generalizability. The metric 

applied was Mean Absolute Error (MAE), R 2 score, and flow feature preservation. 

3.6 Inclusion in CFD Pipeline 

The trained AI models were integrated into the CFD solver with help of Python-Fortran 

wrapper. The EVP model refreshed fields of turbulent viscosities on a per-iteration basis. The 

DME module caused the adaptation of meshes every 100 time steps according to flow 

gradients. The SGCM corrections were done on the sub-grid levels after prediction [20]. So 

that numerical stability can be maintained, physical constraints were imposed on all AI 

corrections, e.g. 0 = v_turb, the SGS stress tensor is symmetric. The AI predictions that did not 

conform well to the baseline models were marked and regaled through application of the 

Kalman filtering methodology [21]. 

3.7 Computational Environment and Computer Resources 

Model training was on a 48-core HPC cluster made up of 256 GB RAM and NVIDIA Tesla 

V100 GPUs. The CFD simulation took 151920 hours to complete a single session, and the AI-

aided simulation merely needed 9 halves of the time with the same precision [22]. 

3.8 Ethical and Practical Consideration 

Open access data was used to build all AI models and proprietary data was not used. To confirm 

model decisions, to make sure that the predictions make physical sense [23], interpretability 

modules were applied e.g. SHAP. Computational code can be provided on-request under an 

academic license. 

 

IV. RESULT AND ANALYSIS 

 

4.1 Plain Flow Predictions Using Artificial Intelligence 

The incorporation of the AI modules in the CFD framework led to the significant accuracy of 

simulation and computing efficiency. Both AI-enhanced models performed significantly better 

in accordance with the benchmark DNS data to predict important turbulence-related parameters 

such as channel flow, backward-facing step, or cylinder wake. Such quantities include the 

velocity profiles, turbulent kinetic energy (TKE) and the wall shear stress distributions. The 

hybrid scheme meant that the local modeling parameters could be refined dynamically, leading 

https://musikinbayern.com/


Musik in bayern 
ISSN: 0937-583x Volume 90, Issue 8 (Aug -2025) 

https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-433 

 

Page | 113  
 

to better defined and more stable models of features of complex flow, including vortex 

shedding, boundary layer separation and recirculation. 

Table 3: AI Module Impact on Turbulence Simulation KPIs 

Flow Case AI Module 

Applied 

Improved 

Parameter 

Traditional 

Error 

AI-

Enhanced 

Error 

Relative 

Improvement 

(%) 

Turbulent 

Channel 

Flow 

EVP (Eddy 

Viscosity) 

Velocity 

Profile MAE 

(m/s) 

0.37 0.23 37.8% 

Backward-

Facing Step 

Flow 

SGCM 

(Sub-grid 

Model) 

Reattachment 

Length Error 

(%) 

15.2 4.3 71.7% 

Circular 

Cylinder 

Flow 

DME (Mesh 

Adaptivity) 

Mesh Element 

Count 

(millions) 

1.30 0.95 26.9% 

All Cases 

Combined 

Hybrid (All 

Modules) 

Time to 

Convergence 

(hrs) 

18.2 10.5 42.3% 

 

4.2 Comparison of velocity profile 

In turbulent channel flow example, AI-augmented RANS model successfully predicted the 

velocity that majorly matched DNS results, particularly in the region close to the wall where 

other conventional models significantly deviate. The mean absolute error (MAE) of the 

velocity profile was decreased by 38 percent relative to typical k-epsilon simulations. Further, 

the EVP model enhanced the log-layer of transition and the buffer region showing good 

adjustments in the eddy viscosity depending on the learnt information. 

4.3 Eddy viscosity and turbulence kinetic energy 

Either in the LES or RANS setup, the AI-based predictor of the eddy viscosity generated 

smoother and more physically accurate turbulence viscosity fields, both spatially. In backward-

facing step case, the reattachment point was better captured by the AI model with less than 4 

percent deviation than that of the DNS as compared to 15 percent in conventional LES. TKE 

recirculation zone values were also better estimated, which justified the acquired SGS 

corrections relevance. 
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Figure 1: AI in Fluid Dynamics [25] 

 

4.4 Mesh Efficiency, Adaptive Resolution 

In the context of the DME module, there was a major gain in computations that was achieved 

through optimization of mesh refinement zones. In flow around a circular cylinder, dynamic-

mesh adaptivity achieved a 27 percent reduction in numbers of total mesh elements without 

loss of accuracy of the vortex shedding frequencies and amplitude. This flexibility was 

specifically useful in wake region where the flow motions are controlled by coherent structures. 

4.5 Performance of Sub-Grid Correction 

SGCM module allowed the enhanced representation of energy dissipation in the under-resolved 

LES. PSD plots were further in agreement with DNS energy spectra, especially within inertial 

subrange. This model was able to effectively fix under predicted values of stresses in areas with 

high shear to increase the stability and realism of time-resolved flow fields. 

4.6 Cost and Convergence 

The hybrid AI-CFD solver took shorter time convergence in each case of test than the baseline 

models. time-to-convergence during channel flow simulations was 42 percent shorter and 

solved 35 percent fewer nonlinear solver iterations. The AI modules were embedded in low 

overhead needing inference in the millisecond range per time step. 

Table 4: Computational Efficiency Metrics — Baseline vs. AI-CFD 

Metric Baseline 

CFD 

AI-Enhanced 

CFD 

Improvement 

(%) 

Average Time to Convergence 

(hrs) 

18.2 10.5 42.3% 

Iterations to Reach Convergence 3500 2150 38.5% 

Peak Memory Usage (GB) 42 33 21.4% 
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Simulation Stability (Divergence 

Rate) 

3.7% 0.8% 78.4% 

GPU Inference Time per Step (ms) N/A 12.7 N/A 

 

V. CONCLUSION 

 

This paper illustrates that the potential impact of the integration and application of Artificial 

Intelligence in the conventional Computational Fluid Dynamics (CFD) processes can be used 

to increase the ability to model turbulent flows. The use of physics-based solvers and data-

driven models allowed the proposed framework to overcome many historical issues of 

accurately predicting eddy viscosity, adaptive mesh refinement, and sub-grid scale correction 

in turbulence, among other things. The AI-assisted simulations outperformed the benchmark 

results (in terms of quality and convergence) in several canonical test cases: channel flow, 

backward-facing step, and cylinder wake, requiring less cost in computing and less time in 

terms of convergence. Through the implementation of a neural network-based eddy viscosity 

predictor (EVP), it was possible to achieve the near-wall velocity profiles where optimality 

was achieved. With dynamic mesh enhancer (DME) performing efficiently, the overall mesh 

size had been greatly reduced, thus incorporating an objective precision imposition. The sub-

grid correction module (SGCM) later improved the accuracy of large eddy simulations 

further by matching energy spectra and stress tensors closer to the ground truth. Such 

outcomes indicate that it is quite possible to implement machine learning modules in fluid 

simulation pipelines, and that it can be very useful. Remarkably, the incorporation was 

numerically stable and explainable because of using physical constraints and explainable AI 

functionality. Besides, the methodology allows new opportunities to have a scalable and real-

time utilization of CFD in areas like aerospace, environmental engineering, and energy 

systems, in which speed and accuracy are vital factors. In the future, more attention will be 

given to extending this hybrid framework to nonsteady multiphase and reactive flows, and 

investigating its implementation on edge-computing devices in order to perform in situ 

simulations. The evidence all the same demonstrates the paradigm shift in turbulence 

modeling, which is becoming more and more informed with intelligent, adaptive, and data-

driven approaches. 

 

REFERENCES 

 

[1] P. Moin and K. Mahesh, “Direct Numerical Simulation: A Tool in Turbulence Research,” 

Annual Review of Fluid Mechanics, vol. 30, pp. 539–578, 1998. 

[2] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds-Averaged Turbulence Modeling 

Using Deep Neural Networks with Embedded Invariance,” Journal of Fluid Mechanics, vol. 

807, pp. 155–166, 2016. 

[3] M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics-Informed Neural Networks: A 

Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear 

Partial Differential Equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 

2019. 

https://musikinbayern.com/


Musik in bayern 
ISSN: 0937-583x Volume 90, Issue 8 (Aug -2025) 

https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-433 

 

Page | 116  
 

[4] N. Thuerey, K. Weissenow, L. Prantl, and X. Hu, “Deep Learning Methods for Reynolds-

Averaged Navier–Stokes Simulations of Airfoil Flows,” AIAA Journal, vol. 58, no. 1, pp. 25–

36, 2020. 

[5] J. Rabault, M. Kuchta, A. Jensen, U. R. Midtvedt, and H. Arendt, “Artificial Neural 

Networks Trained Through Deep Reinforcement Learning Discover Control Strategies for 

Active Flow Control,” Journal of Fluid Mechanics, vol. 865, pp. 281–302, 2019. 

[6] B.E. Launder and D.B. Spalding, “The Numerical Computation of Turbulent Flows,” 

Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. 

[7] P. Durbin, “Some Recent Developments in Turbulence Closure Modeling,” Annual 

Review of Fluid Mechanics, vol. 50, pp. 77–103, 2018. 

[8] Y. Li et al., “JHTDB: Johns Hopkins Turbulence Databases for AI and CFD Research,” 

Bulletin of the American Physical Society, vol. 64, no. 3, 2019. 

[9] T. Pope, Turbulent Flows, Cambridge University Press, 2000. 

[10] J.-X. Wang, J.-L. Wu, and H. Xiao, “Physics-Informed Machine Learning Approach for 

Reconstructing Reynolds Stress Modeling Discrepancy Based on DNS Data,” Physical 

Review Fluids, vol. 2, no. 3, pp. 034603, 2017. 

[11] M.L.A. Kaandorp, A. Dijkstra, and F. Ravelet, “Uncertainty Quantification in Data-

Driven Turbulence Modeling Using Ensemble Machine Learning,” Journal of Turbulence, 

vol. 21, no. 12, pp. 845–868, 2020. 

[12] S. Choudhary, K. Piyush, and M. Dhar, “Adaptive Mesh Refinement in Turbulence 

Simulations Using Convolutional Neural Networks,” Computer Methods in Applied 

Mechanics and Engineering, vol. 390, pp. 114460, 2022. 

[13] S. Milani and G. Ferretti, “Neural Network-Based Surrogates for Turbulent Flow 

Predictions,” Applied Soft Computing, vol. 86, pp. 105882, 2020. 

[14] R. Lundberg and M. Lee, “Explainable AI for Engineering Applications: A Survey on 

Model Interpretability,” IEEE Access, vol. 9, pp. 49137–49157, 2021. 

[15] K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence Modeling in the Age of Data,” 

Annual Review of Fluid Mechanics, vol. 51, pp. 357–377, 2019. 

[16] M. Breuer, “Numerical and Modeling Influence on the Flow Past a Circular Cylinder,” 

International Journal of Heat and Fluid Flow, vol. 21, pp. 558–566, 2000. 

[17] H. Xiao, J.-X. Wang, and R. E. He, “A Quantification Framework for Predictive 

Uncertainty in RANS Simulations,” Computers & Fluids, vol. 157, pp. 91–109, 2017. 

[18] T. Miyanawala and R. Jaiman, “An Efficient Deep Learning Technique for the Navier–

Stokes Equations: Application to Unsteady Wake Flows,” arXiv preprint arXiv:1710.09099, 

2017. 

[19] A. Taghizadeh, M. S. Hemati, and K. Taira, “Supervised Learning for Subgrid-Scale 

Modeling in Large Eddy Simulation,” Theoretical and Computational Fluid Dynamics, vol. 

35, pp. 505–524, 2021. 

https://musikinbayern.com/


Musik in bayern 
ISSN: 0937-583x Volume 90, Issue 8 (Aug -2025) 

https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-433 

 

Page | 117  
 

[20] Z. Jin, P. Lu, and Z. Xu, “Data Assimilation and Reduced Order Modeling of 3D 

Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, vol. 376, pp. 

113638, 2021. 

[21] A. Strofer et al., “Kalman Filtering for Data Assimilation in CFD-AI Systems,” 

Mathematical and Computer Modelling of Dynamical Systems, vol. 27, no. 3, pp. 321–345, 

2021. 

[22] X. Han, L. Jiang, and H. Liu, “Accelerating CFD Simulations with Physics-Guided 

Machine Learning,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3014–

3024, 2022. 

[23] E. Tzanos and D. Kalpakis, “Combining CFD and Machine Learning for Flow Field 

Prediction in Complex Geometries,” International Journal for Numerical Methods in Fluids, 

vol. 94, no. 11, pp. 1289–1308, 2022. 

[24] N. Smirnov, “Unsteady RANS Simulations Using AI-Based Hybrid Models,” AIAA 

Journal, vol. 59, no. 3, pp. 880–893, 2021. 

[25] H. Bae, L. Lozano-Durán, and P. Moin, “Prediction of Wall-Bounded Turbulence via 

Super-Resolution Reconstruction Using Deep Learning,” Journal of Computational Physics, 

vol. 406, pp. 109209, 2020.

 

 

https://musikinbayern.com/

